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It is shown that macroscopic correlations in a fluid are conserved for 
macroscopically long times. The equations of conservation can be written 
in a form independent of the density of the fluid and are therefore valid for 
a liquid as well as for a gas. The possibility of developing a kinetic theory 
of turbulence on the basis of these equations (along the lines of V. N. 
Zhigulev and of S. Tsug6) is indicated. 
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1. I N T R O D U C T I O N  

T h e  pu rpose  o f  this p a p e r  is to s tudy  the  p r o p a g a t i o n  o f  two-po in t ,  l o n g - r a n g e  

(mac roscop ic )  co r r e l a t i ons  in a fluid. W e  cons ide r  a f luid whose  i n t e r m o l e c -  

ular  po ten t i a l  has  a finite r ange  and  d i s t inguish  be tween  l o n g - r a n g e  and  

s h o r t - r a n g e  co r r e l a t i ons  as fo l lows :  W h e n  the  d i s t ance  o f  s e p a r a t i o n  be tween  

any  two  molecu le s  is o f  the  o rde r  o f  the  r ange  o f  the  i n t e r m o l e c u l a r  force ,  

we say the  co r r e l a t i on  be tween  the  molecu les  is shor t  r a n g e ;  w h e n  it is 

cons ide rab ly  larger ,  the  co r r e l a t i on  is l o n g  range.  S h o r t - r a n g e  co r r e l a t i ons  

are  s tud ied  in the t heo ry  o f  d e n s e  gases;  l o n g - r a n g e  co r r e l a t i ons  usua l ly  

1 The contents of this paper formed part of the Ph.D. thesis submitted by the author 
under the supervision of Prof. Harold Grad to the Department of Mathematics, New 
York University and issued as NYU--Couran t  Institute of Mathematical Sciences 
Technical Report MF-72, October 1973. 
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appear in a context apparently unrelated to their microscopic nature, namely, 
in turbulent fluid dynamics. One of our aims is to clarify this connection. 

Contributions to the long-range correlation between any two molecules 
come from their initial correlation and their interaction with other molecules, 
past and present. The Boltzmann equation (see Ref. 1 for a derivation), which 
describes a rarefied gas, is based on the assumption that long-range correla- 
tions are negligible. (It is sometimes ~2~ even stated that, over macroscopic 
times, correlations are destroyed by collisions.) The question naturally arises 
whether this assumption is correct. It was conjectured by Grad (a~ that it 
cannot be, and we verify this conjecture. More precisely, the result is that 
long-range correlations are conserved over macroscopic times (i.e., times 
much longer than the mean free time, such as are relevant on a fluid-dynamic 
scale) in the sense that when they are expressed as correlations between any 
two conserved macroscopic quantities--such as mass and mass, or mass and 
energy--they obey conservation equations just like the ordinary fluid dynamic 
quantities. Thus if the macroscopic correlations are large initially, they will 
continue to be large for macroscopically long times? 

Long-range microscopic correlations can be transformed into correla- 
tions between macroscopic quantities as follows. By introducing a probability 
density on the phase space of the system (i.e., the fluid, regarded as a large 
collection of molecules) and by localizing, with respect to the molecules, the 
macroscopic quantities of interest--such as mass, momentum, and energy--  
one can calculate their densities at a point in 3-space as well as the joint 
densities of any two of them at any two points. Given any two macroscopic 
quantities, one gets the correlation between them by subtracting the products 
of their densities from their joint density. Our result is that if each of the 
two macroscopic quantities is conserved and if the distance between the 
two points chosen is larger than a few times the range of the intermolecular 
force, then the correlation is conserved. 

Some of the macroscopic correlation equations for a rarefied gas have 
been given by Zhigulev (6~ and Tsug6. (7,8) Tsug6 also raised the question of the 
validity of the Boltzmann equation in the presence of turbulence. It is clear 
that the equation is valid as long as macroscopic correlations are small, i.e., 
as long as the motion of the fluid is not turbulent. When there is turbulence, 
all the derivations of the equation break down, but it is not clear whether 
the equation itself remains valid. At any rate, in order to obtain the correct 
macroscopic correlation equations for a rarefied gas, one should replace the 
Boltzmann equation by a kinetic equation or sequence of equations which 

a Correlations, which we shall study here, refer to one time and two or more positions, 
whereas fluctuations, which we shall not study here, refer to two or more times (and 
any number of positions). Fluctuations, like correlations, can be studied either from 
the point of view of fluid dynamics (*~ or from that of kinetic theory. (5~ 
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includes correlations. This we shall do in a subsequent paper. Our work 
could thus be interpreted as a further step toward a kinetic theory of 
turbulence along the lines of Zhigulev and Tsug6. ~ 

A few remarks are now in order. Conventional thermodynamics is 
based on the assumption that the system has only two time-independent 
integrals, namely, mass and energy. If  the system has other integrals, the 
thermodynamics that ensues differs from conventional thermodynamics and 
has been discussed by Grad ~1~ and Lewis. ~12~ Fluid dynamics, however, is 
based on the existence of another integral, namely, momentum. Systems whose 
angular momentum is conserved are also sometimes considered. ~~ 
For the sake of generality, we consider a system whose molecules have 
internal degrees of freedom and which has any or all of the above types of 
integrals. Also, our derivation is valid even when the intermolecular forces 
are velocity dependent, though we require that the divergence of the force with 
respect to velocity vanish. 

The method we use is essentially the same as that developed by Grad ~1~ 
in his generalization of Irving and Kirkwood's ~15~ derivation of the conserva- 
tion equations of fluid dynamics. Grad's method is more general than that 
of Irving and Kirkwood in two ways: (1) Instead of considering only mass, 
momentum, and energy as Irving and Kirkwood did, he considered general 
integrals which are purely additive--as mass and momentum are- -or  which 
have a purely additive part and a part that consists of two-body interactions, 
as energy does. (2) He considered systems which have internal degrees of 
freedom. 

Because of the generality, Grad's method is readily applicable to our 
problem. It consists in computing the density in 3-space of an arbitrary 
integral and, by using the Liouville equation, its rate of change. In order to 
show that the equation for the rate of change is a conservation equation, one 
has to just show that the terms other than the convective derivative of the 
density are divergences of appropriate 5 vector functions. To derive the 
conservation equations for macroscopic correlations, we proceed in a similar 
manner. We first compute the joint density of a pair of integrals and then, by 
multiplying the Liouville equation by the appropriate quantity and integrating 
with respect to everything except the two space coordinates involved, obtain 
an equation for the rate of change of the density. Using this and the equations 
for the conservation of the density of each of these integrals, we get the 
conservation equation for the correlation between them. 

We assume that the molecules of the fluid obey the laws of classical 
mechanics. Our notation is essentially the same as in Ref. 11. Moreover, for 

4 The idea that microscopic correlation functions can be used to describe turbulence 
occurs in Ref. 9, but no equations for macroscopic correlations are derived. 

5 See Section 4. 
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the sake of completeness of presentation, Section 4 is reproduced from this 
reference. 

2. N O T A T I O N  A N D  C O N V E N T I O N S  

We consider a system consisting of N particles, each of which has s 
degrees of freedom, three external and s - 3 internal. We denote the co- 
ordinates of the ith molecule by 

e~ = (x~, ~,, m, p,) 
where x~ is the position vector of the center of mass of the molecule and 
~ = dx~/dt is the velocity vector of the center of mass. The q~ denote internal 
coordinates and the p~ = dq~/dt denote internal velocities. 

Let 

P = (P1, P2, Pa ..... PN) 

denote a point in the 2Ns-dimensional phase space of the system. We intro- 
duce a probability densi tyf(P,  t) on this space and normalize it: 

f f (P ,  t) dP = 1 

where the integration extends over the entire phase space. Whenever we 
suppress the time coordinate--as we did above--we mean that all the 
quantities appearing are considered at one instant of time, namely t. Now, 
we consider a one-phase, one-component system, so that all the molecules 
are identical. We therefore assume tha t f i s  symmetric in all the particles, and 
define the reduced or marginal densities--called the one-particle distribution 
function, the two-particle distribution function, etc.--by 

fz(P~) = f f dP2 dPa ... dPN 

= ffde  ... de. 

and so on. Since we will need only the first four or five distribution functions, 
we adopt the convention that if r is the total number of subscripts of a 
distribution function, then it is the r-particle distribution function; the sub- 
scripts themselves indicate the arguments of the function. For  instance, f245 
is the three-particle distribution function of the particles labeled 2, 4, and 5. 
Clearly, the reduced densities are symmetric and normalized to 1. 

The density f changes in time but in such a way that it satisfies the 
Liouville equation: 

,=1 ~ ~ '  + ~ ~  + ~ P ~  + ~ . G ,  = 0 (1) 
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where F~ = d$,/dt is the acceleration of the center of  mass and G~ = dp,/dt is 
the internal acceleration of the i th molecule. Here, the refers to summation 
over the three external, or the s - 3 internal, degrees of  freedom. 

We write 

N N 

F , =  2 F~ j, G~= ~ G,j (2) 
] = 1  2 = 1  

where F~j is the acceleration of the center of mass of the ith molecule due to 
t h e j t h  molecule; similarly for G~j. The F~ and G~ are the accelerations of  
the ith particle due to external forces. We assume that 

Fu = Fal(P,), Gu = Gll(P~) 

F~j = F,2(P~, Pj), G,j = G12(P,, Pj) (3) 

We consider two cases; an integral E can be of type (a): 

N 

i = 1  

or type (b): 

N N 

E =  ~ E~ + ~ E~j., E~ = E~(p,), ~j = E~2(P~, P~) 
/ = 1  i j = l  

Z<J 

We assume that e~j = ej~ and that e~j has a finite range. I f  r is any phase 
function, i.e., if r = r P~ ..... PN), we define two mean values: 

and 

= N f cfdP1 dPZd_xz"" dPu 

dP1 dP2 "'" dPu 
r x2) = N ( N  - 1) J Cf  -d-~-dxl 

Here the convention is that the integration is performed with respect to all 
the variables except those appearing in the denominator. The expected 
value (~b} of r is defined by 

(r = f e f  dP 

3. D E N S I T I E S  

In order to calculate the amount  of  E in any region D, one has to localize 
it. This we do as follows: E, is localized at x~, the center of  the molecule, and 
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E,j is localized half at x~ and half at xj. Now suppose E is of type (a) and let q~ 
denote the characteristic function of the set D. Then the amount ED of E 
in D is ~i 6(x,)e, and 

(ED) = f ~ r  N f, oflel dP1 (4) 
Xl~D 

Hence if D~ denotes the density of e, D~ = N f elf1 (dP1/dxl) in case (a). 
A similar calculation gives 

dP~ N(N_---1) f ~2f~2dP~ dP2 
D, = N f e ~ A - ~  + dx~ (5) 

in case (b). 
Before we compute the joint density of a pair of integrals, we notice 

that there are three cases: (1) both integrals are of type (a); (2) one integral 
is of type (a) and the other is of type (b); (3) both integrals are of type (b). 
Strictly speaking, case 3 subsumes cases 1 and 2. Nevertheless, for the sake 
of convenience and clarity, we shall consider them separately. Now, let 
4, 4' be integrals. As in the case of the ordinary density, we calculate e~ 
and ~ ,  the amounts of 4 and 4' in regions D1 and D2, respectively. IfJ~,~,, 
denotes the joint density of 4 and e", calculation of (e~xe~2) gives 

c , ,  dP~ 
J~,~, = N3(xl - x2) ) el eft1 

in case 1. 
Similarly one obtains 

(" , , ~ dP~ 
J~,~,, = N3(xl - x2JJ ~i el]1 

f , , dP1 dP2 
+ N(N - 1) el ~2f12 dxz dx2 

f dP1 dP~ 
+ N ( N -  1) r dx~ dx2 

+ N(N2-  1) a(xl - x2) f El'r dPldxldP2 

N ( N -  1)~" , ,  - dPldP2 + 

N(N - -  1)(N - 2)( ~1'4J~23 dP~ dP2 dP3 + 
2 J dxl dx2 

in case 2, and 

f dP1 f" , , dP1 dP2 J,,~,, = N3(x - x2) el'e~f~ ~ + N(N - l) | e~ ezA2 
d 

(6) 

(7) 

~" , , ,, dP1 dP2 + N(N2-  _ x )j 
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in case 3. 

+ N ( N  - 
2 

f , ,, dP1 dP2 
1) q q2fz2 dxl dx2 

+ N ( N  - 1)(N2 - 2 ) f  q'~af12a dPldxldP2dxzdP~ 

+ N ( N 2 -  1) g(x~ - x2 ) f  ~'~2~'~f~2 dP~dx~dP2 

+ N ( N  - 1 ) f  , ,, ~ dP~ dP2 

+ N ( U  - 0(W - 2) f 
2 dxl dx2 

r , , dP~ dP2 
+ U(U4-  1) 3(xl - x2 ) jq2q2f12  d~'l 

+ N ( N  - l)(N - 2) g(x~ - x2) f ei2r dPa dP2 dP~ 
4 dx~ 

+ N ( N  - , , ~ dP1 dP2 

+ N ( N  - 1)(N - 2) f ~13~'~f~23 dP~ dP2 dP~ 
4 dxl dx2 

+ N ( U  - 1)(U - 2) f ~i2daf~a dt'~ de2 a_P~ 
4 dxl dx2 

+ N ( N  - l)(U4 - 2 ) f  ,ge;af~2 3 dP~dx~dP2dx2dP~ 

+ N ( N -  1)(N_- 2 ) ( N -  3 ) f  e[ae~f~2a~dP~dP~dP*dP~dx~ dx2 (8) 

The joint densities consist of three parts. The terms containing the 
g-function give rise to self-fluctuations or autocorrelations. Those in which 
the molecules at xl and x2 interact with each other either directly or via a 
third molecule express short-range correlations. The rest of the terms refer 
to long-range correlations. Since we are interested only in long-range correla- 
tions, we assume that the molecules labeled 1 and 2 are far apart. More 
specifically, if ~ denotes the range of the intermolecular force, we assume 
that in case 1, particles 1 and 2 are separated by a distance larger than ~. 
Then Eq. (6) becomes 

f dP1 dP2 
J~,~,, = N ( N  - 1) q '~f~2 dxl dx2 (9) 
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Similarly, if we assume that particles 1 and 2 are separated by a distance 
greater than 2e in case 2 and 3~ in case 3, Eqs. (7) and (8) become 

f ,,,,~ dPldP2 
J,,~, = N(N - 1 ) )  q %J~2 ~ dx2 

+ N(N - 1)(N2 - 2) f q'e~af~2a dP,dxldPZdx2dPa (10) 

and 

f dP1 dP2 
4"," = N ( N -  l) q '4A~ dx~ dx~ 

respectively. 

N(N - 1)(N - 2) ~'(q,E; 3 + r dP, dP2 dPa + 
2 J dxl dx2 

+ N(N - 1)(N4- 2)(N - 3) f r162 dP~ dP2dx, dPadx2 dP~ (11) 

. 

and 

SOME IDENTITIES AND A F O R M U L A  OF IRVING AND 
KIRKWOOD 

Let ~ be an integral. Introduce the notation 

(i, j )  = b~'  F~j + ~p. G,y 

~e~j _ cqEij 
(i ,  j ,  k )  = " + 

There is no summation on repeated indices. Suppose the system is isolated 
and consists of only one particle. Then dq/dt = O, which gives 

&l ~ &l 
1 +  .pl = 0 02)  

This is an identity that limits the class of functions q that make E an integral. 
If the system is isolated and consists of two particles, then (d/dt)(q + %) --- 0 
in case (a) and (d/dt)(q + % + q2) = 0 in case (b). Using (12), one gets 

(1, 2) + (2, 1) = 0 (13) 

in case (a) and 

(1, 2) + (2, 1) + (1, 2, 2) + (2, 1, 1) 

&12 &12 &12 &,~ 
+ -d-~" ~:* + ~x2" t2 + - -  + - - .  = 0 (14) 8ql 'Pl Oq2 P2 

in case (b). 
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Now suppose that the system is isolated and consists of  three particles. 
Consider case (b). One has (d/dt)(q + �9 + �9 + �9 + q~ + �9 = 0, and, 
on using identities (12) and (14), one obtains 

(1,2,3) + (2,1,3) + (2,3,1) + (3,2,1) + (3,1,2) + (1,3,2) = 0 (15) 

We remark that no new identities are obtained by considering systems 
consisting of more than three particles. Actually, even when a system of three 
particles is considered, no new information is obtained in either case (a) or 
case (b), provided one assumes in the latter case that the intermolecular 
forces are independent of velocities. 

One can verify the following formula of  Irving and Kirkwood ~ls~ by 
direct differentiation: I f  xl ,  x2 are vectors and K is a vector function defined 
by 

K(xl) = �89 x2 c~(xl - c~x2, xl  + (1 - cox2) da dx2 (16) 

where ~ is some smooth function and where the x2-integration extends over 
the whole space, then 

div K -~ (?/c~xl). K = �89 f [~b(xz, x2) - ~(x2, xl)] dx2 (17) 

Conversely, the right-hand side of  (17) is the divergence of K [as defined 
by (16)] plus some divergenceless vector function, as yet undetermined. 

We shall make repeated use of this formula to identify certain terms as 
divergences and the corresponding flow vectors with vectors of the form (16). 
We choose this definition of K out of an infinity of  choices. In order to show 
that this is reasonable, one has to calculate the flow of �9 across the surface 
of a domain D. It is necessary for this purpose to localize the flow of �9 For 
the part of  �9 that is carried by the molecules, this has already been done by 
the localization of e. For the part due to intermolecular forces, we assume 
that the flow between any two molecules is along their line of  centers. With 
this assumption, one can show that the flow vector is exactly of  the form (16) 
if D is a half-space; if D is any other domain, it differs from a vector of  the 
form (16) by one which, though it depends on D, is small and localized. 
Moreover, the difference has zero divergence and therefore makes no con- 
tribution to the total flow of �9 into the domain when integrated over the 
boundary. 

5. C O N S E R V A T I O N  E Q U A T I O N S  FOR C O R R E L A T I O N S  

In order to obtain the equations for correlations, we shall need the 
conservation equation for a general integral, which was derived in Ref. 11. 
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But we need some notation to write it down. We shall adopt the convention 
that if a quantity appears with subscript i, it is evaluated at x~. The mass 
density p~ and the macroscopic velocity u~ of the fluid are defined by 

pl = mN f~ - -~ ,  p~u~ = m N  ~f~dP~ 

The peculiar velocity c~ of particle 1 is defined by c~ = ~:1 - ul. With this 
notation and in case (a), the conservation equation takes the form 

~ .(~uz) + ~ Q ~  0 (18) 
~ - 7 +  �9 - 

where 

Q~ = c ~  - N ( N -  1)KI~ (19) 

where KI~ is given by (16) in terms of 

f ~1 G \ dP1 dP2 
I OC~ " F~z + ~p~ " ~2 ) f ~2 -"d-~ -d-~2 

In case (b), let E*2 = ~1 + �89 - 1)E12. Then the equation is 
- 

~---7- + ~-~" Q~b = 0 (20) 

where 

Q~b = clE'2 - N ( N  - 1)Kla - � 8 9  1 ) ( N -  2)K~b (21) 

where K~a is the same as before and K~b is given by (16), with 

(~lb = ~ ~ p  "G~2 + + dx~ dx2 
. ~ .  G32)/123 dP1 dP2 dP3 

Now we shall derive the equation for the joint density of  a pair of  
integrals E', C. Recall that there are three cases: (1) both integrals are of 
type (a); (2) one integral is of type (a) and the other is of type (b); (3) both 
integrals are of type (b). Recall also that if 

Q 1 2  t ,, : r ~2 in case 1 

Q12 , i, = ~ ~ + �89 - 2 ) ~ ' 4 ~  

and 

in case 2 

Q 1 2  ' " E2E1B ) 2)G1 ~23 + el e2 + �89 - ' " " ' 

+ �88 - 2)(N - 3)E[3e;4 in case 3 

then, in each case, Q12 is the joint density in 3-space of E' and e" when xl 
and x2 are far apart. 
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We shall assume throughout that the system is isolated. 

Case 1. On multiplying Eq. (1) (the kiouville equation) by N ( N  - 1)Q12 
and integrating with respect to d P / d x i  dx2, one gets 

8'0i2 cO '(u~Oi2) + 8' "(clQ12) + 8' 8' 
8't + ~xW-~l ~ -~x2 '(u20"12) + -~xz "(c2Q12) 

8'q' ,, 8'q' ,, 8 ~  

8 ~  ( 8'q' 8 'q ' \  ,, 

( 8'd 8'4,,  [( 8'~' 8'~', ,, - F21.--~2 + Gzl . -~p2) q - ( N  - 2) F la . - -~  1 + Gl~--~pj% 

{F, 0d 8'.~ ~ ,1 + ~ ~ . - ~ ;  + a~ . -~p~/~  ] = o (22) 

I f  identity (12) is used and if it is assumed that Ix2 - x~ I > a, Eq. (22) 
becomes 

8'Q12 8, 8' 8 8 
8'-5- + 5-~ "("~0~) + ~x~ (u~0~) + ~--x~(c~Q~) + ~ x  (c~Q~)  

- ( u -  2) F~. -b~ ~ + o1~ .-Upd~ + F~.  + O~ = 0  

(23) 

The set over which the assumption that [x2 - x,[ > (r fails is a strip 
of width 2~ in six-dimensional space. But a is a small parameter, and ultimately 
we will take a limit in which c~ -+ 0. We believe it can be shown by considering 
the initial value problem that if the terms dropped are small initially, they 
will remain small over a finite, macroscopic amount of time. Intuitively, this 
means that if two specific particles are far apart initially, they have a very 
small probability of coming close to each other within such a time. 

On using identity (13) and the formula of Irving and Kirkwood, (23) 
can be written as a conservation equation: 

8~)12 8 8 - ~ 8 
8'-"--S + "8-ff-x~ " (u10121 + -~2 " (u2Q12) + -~x~ "(e' QI2) + -~x2 " (c2Qz2) 

) - N ( N -  1)(N - 2) ~ + ~-~x~' ~(2) = 0 (24) 

where 

f dP2 K (1) = d~K(1)(xl, P2) -~2 
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with 

and 

with 

r xa) = f / O q '  &*' G \ dPz dPa 
' t - ~  "F'a +-~p~" ~)f~z~'dx-x~-d~x~ (25) 

K (m f q'K(~>(P1, x " dP., 

ecru(x2, xa) = \ ~  F2a + Op----~' 2a)f~2a -~x2~-~a 

Case 2. One first multiplies the Liouville equation by N(N - 1)Qz2 and 
integrates with respect to dP/dx, dx 2. Then one observes that the bar denotes 
integration (with respect to everything except xt and x2) and that, under the 
integral sign, the dummy indices can be interchanged at will. For example, 

t t  t /  &~ , & 2  , 
e2~ . -gg  q = F2~'-b77< q 

If, further, one uses identities (12)-(14) and assumes that Ix2 - xz I > 2e, 
one gets an equation which, on using identity (15) and the Irving-Kirkwood 
formula, gives 

00a 2 0 0 - a 0 
a---t- + g-~x~ (uzO'~2) + -~x= (u2Q~2) + -~x~ (qQ*=) + -~x2 (c2Q~2) 

o .~,~> ___a.~,~,? I 
- X ( N - 0 ( N - 2 )  ~ + a x 2  / 

_ N ( N  -- 1 ) ( N  - 2 )  __~_a. ~(a> _ N ( N  - 1 ) ( N  - 2 ) ( N  - 3 )  __~0. K(6, = 0 
2 0xl 3 0x2 

where K t'> and K (m are the same as in (24) and 

K(a~ = f e'~3K(3~(xl, P2, Pa) dP2dx2dPa 

with 

G ~' dP1 
(9'  = f ~_~7.Fl~ &l' 14)f1234-~7 dP4dx~ 

and 

f dP1 K (m = q'K(6)(P1, x2) -~z 

with 

2a �9 Ga~ ~,0>= ,a," e , ; ,G  e,;3.F ' ]f,23 dP~ alp3 de, 
�9 &4 + Op~ 24 + of~ ~4 + ~, I dx2 dx4 

(26) 
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Case 3. On multiplying the giouville equation by N ( N -  1)Q~ and 
integrating with respect to dP/dx, dx2, and following the same type of 
reasoning as in cases 1 and 2 (with the exception that it is assumed that 
Ix~ - x~ 1 > 3a), one gets 

~Q~ + ~ c~ ~ ~ c .~---[- -~xz.(u~O_.z~) + ~x---.(uzO~) + ~--~.(c, Ql~) + ~--~.(2Ql~) 

- N ( N -  1)(N - 2)~--~-~ .K (~) ~ ) 
\ax~ + ?~x~" ' ~  

_ N ( N - 1 ) ( N - - 2 ) ( N - 3 )  (/_~dxl.~(a > 

N(N - 1)(N-- 2)(N - 3) [~x__].K ~ / ~  ~> 

Jr- ~X~X 2" K(4) 

_I.. c9 .k:(6)t 
ox2 ! 

N ( N -  1)(N - 2 ) ( N -  3 ) ( N -  4) / e c3 ) 6 I ~x~' ~> + ?-~" ~ ,  

where K tz), K (2), K (3~, and ,c ~ are the same as before, and 

with 

K (~> = f elaK(4~(P1, x2, Pa) dPldxldPa 

= :1 ( e4 . 
J 

&~ ) dP2 dP4 
+ ~P2" a2~ f1234 dx2 dx4 

and 

Oe'la G \ dP1 dPa dP~ 
.   )I1 3o exldx  

K(5> = f e'2K(5)(xl, P2) dP2 

with 

and 

,<<7> = f e~4K(7>(xl , P2, P~)" dP2~dP4 

with 

f ' r [Oeia. F "G~5 + ae[a'Fa5 
~I io + t)1 aEa 

= 0  

(27) 

~e'18 G ~ dP1 dPa dP5 
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a n d  

= f E'laK~8)(P1, x~, P~) 
dPl dPa /r 

dx~ 
with  

Before we can  wri te  d o w n  the conse rva t i on  equa t i ons  for cor re la t ions ,  

we have to in t roduce  some n o t a t i o n :  

r = A ~  - Af~ 

and 

r = f1234 - f~ f2 f3A - [f1r ~ - [fff2r - ~[4~1zr 3 

where  ~ is some n u m b e r  6 an d  where  the square  brackets  indica te  a symmet r i c  
s u m ;  the n u m b e r  appea r ing  above  each s u m indicates  the n u m b e r  of  te rms 

in it. F o r  example ,  

[flr a = f l r  + f2~bla + faCz2 

The  above  fo rmu la s  serve as def in i t ions  of  r r etc. In  ana logy  wi th  

the  def in i t ion  of  the r -par t ic le  d i s t r ibu t ion  func t ion ,  ~b~2 .... is called the 

r -par t ic le  cor re la t ion .  

The  n o t a t i o n  i n t r o d u c e d  above  makes  it possible  to express the r -par t ic le  
cor re la t ion  f u n c t i o n  in  te rms  of  the r -par t ic le  d i s t r i bu t i on  f u n c t i o n  and  

lower  order  cor re la t ions  or, equiva lent ly ,  lower  order  d i s t r i bu t ion  func t ions .  

I f  4', E" are any  integrals ,  we shall  deno te  the co r re l a t ion  be tween  them 

by cz2 and  its convect ive  flow by a~2 a n d  b ~ . v  Specifically, in case 1 

c , ,, dP~ dP2 

a12 = clQ12 - cle~' e'~ N2 t" , ,, dR1 dP2 

and  

,, f dP1 dP2 
b12 = c2Q~2 - q '  c2% = N 2 c2q'~r dxl dx2 

6 Different choices of a give rise to different ways of truncating f1204. For instance 
~b1234 = 0 and a = 1 gives the well-known Mayer truncation; a = 0 gives a truncation 
suggested by Grad (private communication). 
In expressing these quantities, we shall put N -~ N - 1 ~ N - 2 - N -- 3 ~_ N - 4. 
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In case 2 

,, N --5 -35--, 
c12 = Q12 - ~1' E2 - - ~  ~1 ~23 

= N 2 f ~ l ' 4 r  dP2dx2 

N 3 f  , . ~ .  
+ - T J  el E23~9123 + fz~ba3 + Ar 

dP1 dP2 dP8 • 
dxl dx2 

al~ and b12 a r e  defined by inserting cl and c~, respectively, in the integrands 
in the definition of c12. 

In case 3 

, ,, N ,, N 2 ~  

f dP1 dP~ 
= N 2 e1'~r dxl dx2 

+ T e~'E~3(r + f2r + f3r dP~ dP2 dP3 
dxl dx2 

N 3 ( ,, , ~. dP1 dP2 dP3 
+ - y ) ~ , 2 ~  + Ar  + Ar dx~ dx~ 

N ~ f  + -~- ei3E;4(r + [f~r 4 + f~f2r + f~f4r + f2f~r 

+ A A r  + ~r162 + (~ - 1)r162 + ~r162 dP~ dP~ dP~ 
dxx dx2 

a~2 and b~2 are defined the same way as in cases 1 and 2. 
We are now ready to write down the equations for the correlations. 

Case l. Using Eqs. (18) and (25), we get 

~c~ ~ ~ 
~ + b-~x~ (~c1~) + b-Lx~' (~c~) + b-Z.a~ 

~ ~(z)' ~ �9 ~(~)' = 0 ( 2 8 )  + ~ b ~  + ~ + ~  

where 

= , , , ~ 2 ~ "  = - N 3 K  (2) + El' N2K2~ to(l)" -N3 tc (1 )  + ~:2 IV ~la~ K(2)' 
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Case 2. Using Eqs. (18), (20), and (26), we get 

aci2at "q- .(uiciz ) -k .(u2ci2) -Jr- ~xi.a12 

a a ~(3)') -~-~.,(~(~)' + ~(~)') = 0 + ~-~x~ ' b~  + ~-~x~'(~(~)' + + 
~xz 

where ~(~)' and ~(~)' are the same as before, and 

Case 3. Using Eqs. (20) and (27), we get 

acz~ b a a a 
0--7- + ~ ' ( ' ~ )  + ~ ' ( " ~ c ~ )  + ~-~ .a~: + ~ . b i ~  

[ .  ( i)" ~t(a)' ,~(5)' + - - . , ~  + + + + ~ + + + 
axi 

(29) 

=0 

(30) 

aci2 a a aa[2 abe2 
-b-7 + ax~ - - ~  (u1%~) § - -  ( " ~ )  + - -  + - -  = o aX~ i aXi { aXi i 

(30 

Mass-Mass .  q '  = m, %' = rn, and 

f dP1 dP2 
c ~  = :V~rn 2 ~ ~ dx~ 

~ dPz dP2 i,  dPx dP2 

~(~)'~ and K (2)'~ vanish. Equation (28) becomes 

where K (1)', K (2)', K (3)', and ~(6), are the same as before, and 

1 ~ r 3  ,, r z  K(4)' = _�89 + ~,1 afsq3,,~z~,, , i  K(5), = -1N%(5) + ~Iv %~-ib 

1 4 . . . .  K(8)" --~NSK (s) + ~N%'13K2b ~(7)' = _~NSK(7) + ~ N  %4~1b, = 

We emphasize that all the foregoing calculations apply to a fluid of any 
density and that rarefaction has nothing to do with correlations. But when a 
gas is rarefied, the terms containing the intermolecular potential explicitly 
can be dropped. The equations for the correlations take the form 

a a 
ac,~at +~-Za .(u~ci~) + . ( u ~ )  + ~-z .a~  + ~-~ .b~ = o 

where the quantities c~2, ai2, and b~2 are defined as in case l, For a rarefied 
gas, the correlation equations corresponding to Euler's equations have been 
derived by Zhigulev (~) and those corresponding to the Navier-Stokes 
equations by Tsug6. (7'8) Finally, we shall consider some special cases of 
Eqs. (28)-(30). 
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Mass-Momentum. ~ '  = m, ~ = m~j ,  and 

�9 ~ dP~ dP~ 
c~ --- N2m~ J ~J~b~2 dxz dx2 

~(~)'~ = 0 and 

with 

f dP~ 

f dP~ dPa 
c~ (~)~ = m F~af~a dx~ dxa 

Let yJ = x f l ' - x j .  Then, if the intermolecular forces are central, Fja 
depends only on r = [y[: 

F~a = y~F*(r) 

where F*(r) is some function of  r. Let  

f dP2 dP3 
g123(P1, x~, xa) = f~2a dx~ dxa 

Then 

and 

4(mJ = mf f  F*(r)g12s 

j L 1 K (2)~j = l m  y~ffF*(r) g12s(x2 - Ay, x2 + (I - A)y)dA dy 

where we have suppressed the dependence of  g123 on P1. 
Recalling that 

K~ 'm f ,,~/F*(r~ (1 

we obtain 

= 'm2N 3 ( , ,q/F,r  ~ (1 (~12a +f2~b13 K(2)'i j  

where the integrand of  the inner integral has already been integrated with 
respect to dP2 dPa/dx2 dx3 and is evaluated at (x2 - Ay, x2 + (1 - A)y). 

Mass-Angular Momentum. q '  = m, E'~ ik = m(x2Y~2 k - x2~se2 j) + /4 ~, 
where/~2 is the internal angular momentum of  molecule 2 (if i, j, k are cyclic, 
we denote the ith component  of  t~2 by t4k). We have 

c~k2 = N2m 2 f (x2j~2k k j dP~ dP2 X m j 1~2 ~b12 -~xl dP2 
. d x  2 

K (1)'ljk = O, K (2)'IJk = --NaK (2)zj~ + N 2 p , K ~  
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M o m e n t u m - M o m e n t u m .  d, j = mEj ,  E; ~ = ms ~, and  

f dP1 dP2 
cl~ = NZm z ~1J~2~r dx l  dx2 

I f  the in termolecular  forces are central ,  we proceed in the same way as in 
the m a s s - m o m e n t u m  case and obta in  (y~ = x3 ~ - xz ~, r = lyl) 

fo K<I),,j ~ m f y ~ F * ( r )  (r + f l r  + far da dy dP2 = 

and (y~ = xa i - x2', r = ]Yl) 
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